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Note 

Periodic Solutions of Differential Equations 
and One-Parameter Family of Operators 

A method for computing bounds to periodic solutions of the system 

?” =/IL Y)> ~.f E R”, fperiodic in t with period r, (1) 

is studied using an integral equation 

.I’= G,p, (2) 

depending on a parameter 1, and whose solutions for each A^ are the periodic solutions of (1). 
i is then given a value i, so as to determine a set S for which G,I,S c S. Since G,L, is proved 
to satisfy Schauder’s conditions. then in S there is a solution of (2), i.e., a periodic solution of 
(1). The method, which evidently also constitutes an existence proof in S, has the peculiarity 
of being quite general since it can be used to bound other kinds of solutions of the system 
.r’ = f(r, J). by simply setting up a different integral equation 4’ = G., y which possesses the 
solutions to be bounded. This method has then been used to bound periodic solutions of a 
system arising from the dynamics of two floating bodies, for which G., S c S has the form of 
a system of inequalities. 

1. INTR~OUCTI~N 

Let f(t, y) be a continuous function f: R X R” + R”, periodic in t with period T. 
For the norm of y = (y,, y, ,..., v,,) in R” we take XI=, ( yi( and use the symbol ( y ] 
instead of I] y ]I in order to avoid confusion when defining later the norm of y as an n- 
valued function on [O, T]. Let C[O, T] be the vector space of continuous functions 
y: 10, T) + R”, with the norm /I y]] = max,,,,,,] lyl, and let D be a set in C[O, T]. The 
problem considered here is that of determining bounds for periodic solutions in D of 
the system 

Y = f(4 Y), o<t, lYl< a. (1) 

The following method reduces the problem to that of finding a solution A E R” of 
an inclusion relation (often defined as a system of inequalities). At first, a function 
Y’(J, t, y) depending on a parameter A E /1 is set up so that the solutions of the 
integral equation 

where A is a nonsingular matrix, depend on c but not on 1 (i.e., invariant with ,I). 
A simple example of invariance of solutions for equations in one variable is given by 
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F(x) + Ag(x) = 0, A> 0, where F and g are nonnegative functions having the same 
zeros. Besides, Y must have the property that (2) is equivalent to (l), i.e., all the 
solutions of (1) are also solutions of (2) and vice versa. Then we determine c so that 
the corresponding integral equation, which we write briefly y = G,%y (it always 
contains A), has, as solutions, only the T-periodic solutions of (1). A is at this point a 
free parameter which is used to find bounds for the solutions of y = G,ly, i.e., 7’ 
periodic solutions of (1). In fact, assuming that for a given A = A,, we can determine a 
bounded set S c C(0, r], S c D, such that G,loS c S, then in S there is a T-periodic 
solution of (1) since G,O satisfies the conditions of Schauder’s theorem (Theorems 3 
and 4). In some cases of applied physics (see Section 3) G,%S c S is a system of 
inequalities and A0 is a solution of such a set. The above method of bounding the 
solutions which evidently has the property of being at the same time an existence 
theorem, allows the use of iterative schemes when not only bounds but also numerical 
values of the solution are sought. In fact the use of iterative schemes, such as the 
generalization of the Picard method for initial value problems. see 121, requires, as a 
main condition, that all iterations are bounded, which will be the case if G,%,,S c S 
and the starting point is in S. In Section 2 we prove the equivalence theorem for (2) 
and derive the equation 4’ = G, y. We also show that G,{ satisfies Schauder’s 
conditions for every A EA. In Section 3 we use the results of Section 2 to compute 
bounds for periodic solutions of a second-order damped system with forcing term. 
This is done simply by finding some A solution of a system of inequalities. 

2. THE CLASS G, 

Let A(A, t) be a nonsingular matrix whose elements are functions of A and f, 
A E R”, 0 < t < co, and let dA/dt be the derivative of the matrix A with respect to t. 
Assume that dA/dt has elements continuous with respect to t, and let 

where f is the function occurring in (1). 

THEOREM 1. For any fixed I. the integral equation 

A@, t)y = [’ Y(d, r, y) ds + c, cER”, 
‘0 

is equivalent to (1). 

ProoJ Let y* be any solution of (1). We find from (3) 

(3) 

-$ /A(& t)y* - 1’ !I’(& r, y*) dr 1 = 0, 
0 
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i.e., 

Ay* - If Y dz = constant. 
0 

Conversely, if y* is a continuous solution of (3) we have 

dy* dA 
+ y” +A@J)~=- dt Y” +A% r)f(t, .!‘*>, 

and the theorem is proved. 

As an example let (1) be a system of the form 

Y’ = WY + m Y>, F, yE R”. 

with S an n x n matrix. If Y is a fundamental matrix of y’ = Sy, i.e., one whose 
columns are linearly independent solutions of y’ = Sy, we may take A(& t) = Y ‘(t) 
and with some manipulations we get for (3) 

y = ro’ Y(f) Y- ‘(5) F(7, y) dz + Y(t)c, 

which is the classical transformation of the foregoing system into a system of integral 
equations. 

If we restrict ourselves to T-periodic solutions of (1) i.e., solutions of the system 

Y’ - f(c Y>, O<t<T, 

~(0) = Y(T), 

and assume that A(& 0) #A@, T), we get from (3) and (4) 

(4) 

y = A - ‘(A, 1) i’ Y(l ,qy)dz+A-‘(,Q)B-’ l’rY(/l , r, y) dr, (5) 
-0 '0 

where 

B=A(k,T)A-‘@,0)-Z. 

The right-hand side of (5) defines an operator G, : C[ 0, T] -+ C[O, T] (depending on 
1) and it is easy to see that (5), which may be written as 

Y=G,Y, 

has the same continuous solutions as (4) for each ;i. 
Before showing (Theorems 3 and 4) that G, satisfies the conditions of Schauder’s 

theorem, we recall the definition of relative compactness and the statement of 
Schauder’s theorem, see [l, p. 4561. 
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DEFINITION. A subset S of a metric space is called relatively compact if every 
sequence in S contains a convergent subsequence (i.e., if S is compact). 

THEOREM 2 (Schauder). Let S be a convex closed subset oja normed space. Let 
H be a continuous mapping of S into a relatively compact subset of S. Then H has a 
fixed point in S. 

THEOREM 3. Let G, be the operator defined by (5), A a set in R”, and let 
S c C[O, T] be a bounded set such that for any d E A, G, S c S. Then GAS is 
relatively compact for any 1 EA. 

Proox Since yI(/z, t, x) is a continuous vector function of t and x, 0 < t < T, 
xER”, there exists M > 0 (depending on I) such that j YyI < M when x E S. From 
(5) the equation AJJ = AG,x takes the form 

A(& t)y = f’ !P(l ,qx)dr+B-’ f Y(/l , r, x) dr. 
-0 “0 

(6) 

We have (for any y E G,S) 

A@, t + h)y(t + h) -A@, t) y(t) = j-l+’ F(k 7, x) ds, t + h E IO, TI, 
“I 

or equivalently 

Then, for every 1 E /1, 

1 y(t + h) - y(t)1 Q A - ‘(/I, t + h) dA(“;t+ Oh) by(t)) 

+ A-‘(I,t+h)\‘+nP(l,r,x)d~~, 
-I 

where 0 < 0 < 1. Recalling that 1 ) is the [,-norm in R”, and using for the norm /) )/ of 
matrix the corresponding )( 11, norm, we have 

where N is a bound on y (from G,S c S, S bounded). Hence G,S is equicontinuous 
on (0, Tj, and since for each t in [0, T] the set (y(t): y E S) is relatively compact in 
R” (it is bounded), it follows from a generalization of Ascoli’s theorem, see (3, 
p. 1681, that G,S is relatively compact. 
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THEOREM 4. The mapping G, de~ned by (5) is eont~nuous on C[O, TI. 

Proof. Let x,, E C[O, T] and let m be a positive number. In the closed region 
[O, T] x V, where V is the closed ball {x E R”: (x-x0/ <m}, Y is uniformly 
continuous (for any fixed A). Then, given cs, > 0, there is a 6 < m such that 
1 Y@, r, X) - !&I, z, x0)1 < u, whenever /x - x,j < 6. From (6), taking x E C(0, T] 
such that lx(t) - x,(t)/ < 6, we have (if p0 = G.\x,) 

t y(t) - y,(t)1 < A - ‘(4 t) j.1 (W, 7, x) - ‘W, 7, xJ) d7 1 

+ A-‘(h,t)B-’ [r(Y(k,71x)- Y(d t 7, &I> d7 , -0 

which, using the maximum norm in C[O, T], becomes 

Given any (I, it is sufficient to take a 6 corresponding to o, < cr/(T(l + ljB--‘j\) 
max,,to,Tt /(A -’ 11) in order to get 

IIY-Yyoll (0 when IIX--0Il < 4 

which proves that G, is continuous at x0. 

3. APPLICATION TO A SECOND-ORDER SYSTEM 

The problem of the dynamic behaviour of two close floating bodies has arisen at 
CERN. The corresponding mathematical system is 

u”+b,lu’~u’tc,utd(u-v)‘=Fsin(wt+#), 

U” + b, Iv’ I z?’ + c2v - d(u - v)’ = E sin(wt), 
(7) 

where b, , c, , d, b,, c2, F, E, w, (s are positive coefficients. We shall determine a set of 
values of the coefftcients such that, for each value in the set, there exists a periodic 
solution of (7) with period T = 2740.1. 

Putting u = y,, U’ = y,, v = y3, v’ = y,, (7) takes the form of (1) 

Yi=Y,, 

Y; = d', - c2 Y, - dy4 - 4 I Y, I y4 + E sink4 

581/51/3-12 
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We take for A(& t) the following matrix, in which for simplicity 1 E R (instead of 
LER”),d>O, 

A@, t> = ~ e”;*“* jt .‘,,,). 

MultipIying (5) by A {,I, t) and replacing y by x in the right-hand side we get from (8) 

(9) 

where 

Y,=eA”((A-c,)x,+@+ l-d)x,-b,Ix,lx,+dx,+Fsin(otf~)}, 

yl:,=e(*+“‘{-c,x,+(~+l-d)s,-b,jx,jx,fd.~,+Fsin(oz+(6)}, 

Y3 = eA’{dx, + (A - cl) x3 + (k + 1 - d) x, - b, Ix,/ x4 $ E sin(wr)], 

4vq = ecs1+i)7(~x, - czxj + (A + 1 - d) x4 - b, /x4/ x4 + E sin(wr)]. 

In operator form, 

Ap = A G, x, x, .Y E C[O, z-1. 

We now determine a closed convex set D, such that G, D, c D,%. We define D,t by 
the inequalities 

/Xi/ GM;, i = I,..., 4. 

and choose Mi together with II and the coefftcients of (7), in such a way that 

l.Yil <Mi, i = I,..., 4, 

Assume 

(10) 
(11) 
(12) 
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Using (xi\ GM, and (lo)-( 12), we get from (9) 

Similarly, the condition ) y/l ,< Mi will be satisfied if 

a -cl 
--+f,+ 

(A + 1 - d)’ + dM, 
4b,A 

T+;<M,-M,, 

~1 M +(a+l-42 dM, F <M 
L+1 I 

- - 
4b,(A + 1) +A+1 +A+1 2’ 

1 - c2 
fM2+- M +Q+1-d)2+&<M -M 

a 3 4b,A a’3 4’ 

d M +@+I--d)‘+ cz 
A+1 2 4b,(;3. + 1) at1 

M + E 
3 J+I dM43 

a system which takes the form 

(A + 1 - d)’ 

4bl 
+dM4+F<c,M,-AM,, 

(a -I 1 - d)2 

4b, 
+dM,+F<(A+ l)M,-c,M,, 

(A + 1 - d)2 

4b2 
+dM2fE<cZM3-LM4, 

(/I + 1 - d)* 
44 +dM,fE<(A+ l)M,-c,M,. 

(13) 

We recall that to each solution of (IO)-(13) corresponds a D, : JXiJ < Mi and 
G,DA:lyil<Mi such that GAD,cD,. 

We try to solve the system of inequalities (lo)-( 13) (where the unknowns are the 
coefftcients in (7), together with A and MJ by taking 
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M =1+1-d 
? 

b, ’ 

M =1+1-d 
4 

b, ' 

C,M, = 3LM, + 4M,, 

c,M,=/4M,+$M,, 

(14) 

which, substituted in (13) gives 

b,M;+4dM4+4F,<2M,, 

b2M; + 4dM, + 4E < 2M,. 
(15) 

The solutions of the system formed by the seven inequalities (IO), (14), and (15) are 
evidently also solutions of (lo)--(13) (but not vice versa). Using the following 
theorem which gives solutions of (15), we obtain a set of solutions of (IO), (14), and 
(15). 

THEOREM 5. A set of solutions of (15) is given by 

4F<;, 
1 

4E<+, 
2 

M*=$, 
1 

M,=$ 

4d<min lb, (k-4F).b, (t-4E) 1. 2 

Proof. Assume 4F c lfb,, 4E < l/bz. It is easy to see that for M, = l/b,. 
M, = l/b, the expressions 2M, - b,Mi - 4F and 2M, - b,Mi - 4E take their 
maximum value at (l/b,) - 4F > 0 and (l/b,) - 4E > 0, respectively. Substituting 
values taken from the set 4F < l/b,, 4E < l/b,, M, = l/b,, M, = l/b, into (15) it is 
evident that the two inequalities are solved if 4dM, < (l/b,) - 4F and 
4dM, < (l/b,) - 4E. 

We then have the following solutions of (lo), (14), (15): 

/I = d, d Z max{c,, c,}, d<min [+(&-4F),$(i;-dE) 1, 

Mz=+, c2b2, 
1 

4F<;, 
1 

4Ei;. 
2 

In conclusion, for values which satisfy the above inequalities and for any w and 4, 
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there exists a 2x/w-periodic solution of (7). For example, the following values 
suggested by physical requirements are found to satisfy our inequalities 

b, = 0.1, b, = 0.1, c, = 0.3, cz = 0.2, 

d = 0.3, F= 1, E = 0.5, Q = 0.5, w = 2, 

which yields A = 0.3 and the solution bounds M, = 27, M, = 40, i.e., 

-27. < u < 27.) 

-40. < v < 40. . 

We have also computed some solutions (one with the above data) using the iterative 
scheme yn + 1 = G, yn . In all cases the iterates converged numerically to curves which 
were verified to be periodic solutions. 
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